US009230037B2

a2 United States Patent

Sinai et al.

US 9,230,037 B2
Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54) IDENTIFYING AND RESOLVING CACHE 711/E12.023, E12.043, E12.069; 709/212,
POISONING 709/214-219
See application file for complete search history.
(71) Applicants: Eyal Sinai, Kfar Saba (IL); Or Igelka, .
Ramat Gam (IL) (56) References Cited
U.S. PATENT DOCUMENTS
(72) Inventors: Eyal Sinai, Kfar Saba (IL); Or Igelka,
Ramat Gam (IL) 6,014,756 A 1/2000 Dottling et al.
6,393,399 Bl 5/2002 Even
: . 7,421,562 B2 9/2008 Bhatt et al.
(73) Assignee: SAP SE, Walldorf (DE) TA71,684 B2 12/2008 Finley etal.
7,480,767 B2 1/2009 M.
(*) Notice: Subject to any disclaimer, the term of this 7,590,803 B2 9/2009 Wﬁfgrgerst
patent is extended or adjusted under 35 7,930,428 B2 4/2011 Drako
U.S.C. 154(b) by 336 days. 8,001,271 B1 8/2011 Malan et al.
8,095,831 B2 1/2012 Moyer et al.
8,190,951 B2 52012 Gille
(21) Appl. No.: 13/743,043 2004/0068579 Al* 4/2004 Marmigere et al. 709/242
2006/0209818 Al 9/2006 Purser
(22) Filed: Jan. 16, 2013 2008/0228899 Al* 9/2008 Plamondon 709/219
2008/0229025 Al* 9/2008 Plamondon 711/126
: ot 2011/0066807 Al 3/2011 Hay et al.
(65) Prior Publication Data 2012/0180125 Al 7/2012 Sunetal.
US 2014/0201457 Al Jul. 17,2014 2013/0198338 Al 8/2013 Pinto et al.
2013/0318055 Al 11/2013 Lorenz et al.
(51) Int.CL * cited by examiner
GO6F 17/30 (2006.01)
GO6F 12/12 (2006.01) Primary Examiner — Zhuo H Li
(52) US.CL (74) Attorney, Agent, or Firm — Buckley, Maschoft &
CPC ... GO6F 17/30902 (2013.01); GOGF 12/121 Talwalkar LLC
2013.01) (57 ABSTRACT
(58) Field of Classification Search

CPC oo, GOGF 11/073; GOGF 11/0793; GOGF
12/0802; GOGF 12/121; GOGF 12/127; GO6F
21/00; GOGF 11/141; GOGF 12/0804; GOGF

12/0811; GOGF 12/0815; GOGF 12/0866;

GOGF 12/0868; GO6F 12/0897; GOGF 12/12;

GOGF 12/123; GOGF 12/126

USPC ... 711/118, 119, 134, E12.001, E12.017,

4

100 N

According to some embodiments, a method and apparatus are
provided to receive, at a cache entity, a refresh request asso-
ciated with a resource. A determination is made, via a pro-
cessor, and based on the refresh request, to reload the resource
from a server. The reloaded resource is replaced at the cache
entity.

20 Claims, 7 Drawing Sheets

110
!/..

Raceive, Al A Cache Entity, A Rafresh Reguest Assoclated With A
Rarticular Resource

)

12
120

I

Determine, Basad On The Refresh Request, To Reload The Resource
From A Server

130
//-

Replace The Reloadad Resource At The Cachs Enfity,

U.S. Patent Jan. 5,2016 Sheet 1 of 7 US 9,230,037 B2

45".'
!‘/’-

Raceive, AL A Cache Entity, A Refresh Reguest Assoclated With A
Particular Resource

rs 120

Determing, Basaed On The Refresh Request, To Reload The Resourcs
From A Server

130
¥ 4

Replace The Reloadad Resource At The Cachg Entity.

FiG. 1

U.S. Patent Jan. 5,2016 Sheet 2 of 7 US 9,230,037 B2

r 210

Receive, At A Cache Entity, A Refrash Request For A Particular
Resource

- 220

increment A Reliagbility Score Of The Particular Resource

230
¥ -

Detarmine If The Reliability Score is Greater Than A Predetermined Limit

240
¥ 4
if The Reliabillity Scors Is Greater Than The Predetermined Limit, Reload
The Particular Resource, Eise Use A Currently Cached Version Of The
Resource.

FiG. 2

U.S. Patent Jan. 5,2016 Sheet 3 of 7 US 9,230,037 B2

330
r

Server

FIG. 3

320
Cache
Entity

[u

n

300 -\¥

Client

US 9,230,037 B2

Sheet 4 of 7

Jan. 5, 2016

U.S. Patent

JEYNETS

amw\\

b Ol
pug pug |
— JUOL] e JOI] e JUBID
JEVNETS weig |
ovwsx
o - ozy
ogr

Wi:oev

U.S. Patent Jan. 5,2016 Sheet 5 of 7 US 9,230,037 B2

500 S

Resource {0 R%ﬁ;ﬁ“i Max Allowable Level Starting Reliability
1 42 50 0
2 19 30 0
3 40 50 46
4 35 75 0

FIG. 5

U.S. Patent Jan. 5,2016 Sheet 6 of 7 US 9,230,037 B2

600 —
Clignt 1D Status fncremant
gog 604 08
1 Normal
2 Abusive 0
3 3ood 2
4 Normal 1
& Good 3
6 Normal 1

FIG. 6

U.S. Patent Jan. 5,2016 Sheet 7 of 7 US 9,230,037 B2

00
User Intarface Medium
201 702
Processor Memory
103 704
Storage
£05

FIG. 7

US 9,230,037 B2

1
IDENTIFYING AND RESOLVING CACHE
POISONING

BACKGROUND

A web cache saves resources of various types from one or
more web servers and provides these resources to clients
when a request for the resource is received. When a client
sends a request for a specific resource, the request is received
at the web cache and the cache checks whether it already has
a copy of the requested resource stored in its storage and
determines whether the copy of the resource has or has not
expired. If the copy of the requested resource is available and
has not expired, then the web cache sends a response to the
requesting client with this stored copy of the resource, with-
out communicating with the original server which holds this
resource.

The advantages of caching are that by receiving the
requested resource from the cache, the client gets a faster
response to his request, network traffic is reduced, and the
load on the web server supplying the resource is reduced.

Sometimes, however, a web server may provide an incor-
rect or incomplete copy of the resource to the web cache (i.e.,
“poisoned” the cache). Furthermore, in some embodiments a
cache may be poisoned by a cache simply becoming defec-
tive, and thus the copies of the resources stored within the
cache are also defective. Thereafter, clients who request the
resource will get an incorrect or incomplete copy in response
to their request. While the incorrect or incomplete resource
copy may be quickly remedied on the web server, the web
cache may still store the incorrect or incomplete copy of the
resource. Since cached resources are associated with a time
out period (e.g., expiration time), conventional remedies
involve waiting until the time out period of the cached
resource has expired and then the web cache will evacuate the
previously stored copy of the resource by itself. However,
until the time out period ends, users will be unable to obtain
the desired resources from the web server, unless an admin-
istrator will manually clean up the cache, usually the entire
cache (which would cause performance degradation, since
“good” resources are deleted as well).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a method according to some embodi-
ments.

FIG. 2 illustrates a method according to some embodi-
ments.

FIG. 3 illustrates a system according to some embodi-
ments.

FIG. 4 illustrates a system according to some embodi-
ments.

FIG. 5 illustrates a portion of a database according to some
embodiments.

FIG. 6 illustrates a portion of a database according to some
embodiments.

FIG. 7 illustrates an apparatus according to some embodi-
ments.

DETAILED DESCRIPTION

The present embodiments relate to a method and apparatus
to identify and resolve situations when a cache has been
poisoned with incorrect or incomplete information. Cache
Poisoning may comprise a cache that has stored a defective
copy of a resource in its storage (e.g., incorrect or incom-
plete). Cache poisoning may be the result of a cache sending

10

15

20

25

30

35

40

45

50

55

60

65

2

a request for a copy of a resource to a server, and the server
replies with a defective response. The cache may consider this
response as valid without knowing that it’s defective and then
the cache responds with the defective resource when a request
from a client is received for the duration in which the resource
reside in the cache (instead of making it a one time error).

A user, onthe other hand, may notice that there is a problem
with a resource and may click “refresh” in his browser or any
other HTTP client, or any similar “refresh” action (e.g., ctrl+
r/FS5 key/ctrl+F5), in hopes that by refreshing, a fixed (e.g.,
repaired) version of the resource will be loaded from the
server. A client may comprise any entity which can request
resources from a server and/or a cache such as, but not limited
to, an internet browser, a computerized utility, computer soft-
ware, a dedicated hardware appliance, an automatically/
manually activated computer script/program etc.

Referring now to FIG. 1, an embodiment of a method 100
is illustrated. The method 100 may be embodied on a non-
transitory computer-readable medium. Furthermore, the
method 100 may be performed by an apparatus such as, but
not limited to, the apparatus of FIG. 7. The method 100 may
be associated with identifying and resolving cache poisoning.

At 110, a refresh request associated with a particular
resource may be received at a cache entity. A refresh request
may comprise sending a message to a server requesting thata
particular resource be reloaded. In some embodiments, a
resource may comprise, but is not limited to, a web page, an
image file, a sound file, a video file, a document file, or any
other type of data (or a portion of data) which may be used by
a processor and/or stored on a computer. A cache entity may
comprise an entity which stores resources being passed
through it where a copy ofthe resource is stored in the entity’s
storage. A cache entity may comprise, but is not limited to, a
web cache, an internet browser cache, a proxy server, an
in-memory cache, software/hardware cache, a processor’s
cache, a dedicated hardware and/or software appliance, or a
cache system (as will later be described) that may be located
between a server and a client.

For illustrative purposes, and to aid in understanding fea-
tures of the specification, some examples will be introduced.
These examples are not intended to limit the scope of the
claims. In a first example, and referring to FIG. 3, a system
300 illustrates a first client 310, which wishes to view an
image on web page X. Web page X is hosted on server 330. In
this example, the first client 310 receives only half of the
image (e.g., a defective image) when he retrieves web page X
from a cache entity 320. The first client 310 sends a refresh
request (e.g., a user hits the refresh button on his web browser
and his computer sends a refresh request) which is received
by the cache entity 320. If, for example, the cache entity 320
is a web cache then the client may be a web browser or a
person using their web browser. In this example, the refresh
request may comprise a Hypertext Transfer Protocol
(“HTTP”) GET request for the image on web page X.

Referring back to FIG. 1, at 120, a determination to reload
the resource from a server is made based on the refresh
request. Reloading the resource may comprise copying the
resource from a server to the cache entity. The determination
may be made by a processor, such as the processor described
with respect to FIG. 7. The determination may be made based
on various rules. In one embodiment, the determination to
reload the resource from the server may be based on receiving
X number of refresh requests from Y number of users. For
example, arefresh rule may be that a resource is reloaded after
three refresh requests are received from three unique users.
Embodiments such as this may indicate to the cache entity
that the user community has noticed a problem with the

US 9,230,037 B2

3

resource and this indication may influence the logic of the
cache entity to remedy the problem. In another embodiment,
the reload may be based on a reliability level associated with
a server that supplies the resource, which will be explained in
more detail with respect to FIG. 2.

The cache entity may determine that a received request is a
refresh request by examining the header information associ-
ated with the request (e.g., a HTTP GET request) which may
contain information (e.g., a field) that indicates that the
present request is a refresh/re-get request as opposed to an
initial HTTP GET request. In some embodiments, each type
of web browser may add its own HTTP headers, or fields, to
a request to indicate a refresh action (e.g., Microsoft Internet
Explorer®, Google Chrome®, Mozilla Firefox®, Apple
Safari® and Opera® by Opera Software). In this way, the
caching entity may be capable of identifying unique requests,
and, for example, when 3 such requests arrive for the same
resource, the cache entity may understand that there’s a prob-
lem with this resource, and will resample the server to get an
updated and/or a fixed version/copy of the requested
resource.

Continuing with the first example, and again referring to
FIG. 3, the cache entity 320 may determine whether or not to
reload the resource from the server 330 based on the refresh
request. For example, if we use the aforementioned rule of
three refresh requests being received from three unique cli-
ents, the cache entity 320 may determine if the refresh is a
third request from a third entity (e.g., a third unique client)
and, if true, then the cache entity will reload the resource form
the server 330. If false, then the cache entity will not reload
the resource from the server 330.

Next, at 130, the reloaded resource is replaced at the cache
entity. Continuing again with the above example, and assum-
ing that the request was a third request from a third unique
entity, the picture that was only half loaded will be reloaded
from the server 330 into the cache entity 320 as a complete
picture.

Referring now to FIG. 2, an embodiment of a method 200
is illustrated. The method 200 may be related to reloading a
resource from a server into a cache entity based on reliability
levels of the resource and/or the server. Like the method 100
associated with FIG. 1, the method 200 also relates to reload-
ing the resource in a cache entity based on a received refresh
request. At 210, a refresh request for a particular resource is
received at a cache entity. Like the method 100, the refresh
request may be in the form of an HTTP GET, or other unique
actions.

In a second example, and now referring to FIG. 4, a system
400 illustrates a second client 410 who wishes to view a news
web page Y from server 430. In this example, the second
client 410 receives a non-news website (e.g., the wrong web
page) when he retrieves web page Y from a cache entity 450.
The second client 410 sends a refresh request which is
received by the cache entity 450. Specifically, the refresh
request is received at a client front end 420 of the cache entity
450. The client front end 420 may comprise a proxy server or
other type of cache entity. In this example, the cache entity
450 may comprise multiple cache entities such as the previ-
ously mentioned client front end 420 as well as a server front
end 440 to receive and store a resource from the server. In
practice, the server 430 may send a copy of a resource to the
server front end 440 where the copy of the resource is stored
in a cache at the server front end 440. The server front end 440
may forward the cached resource to the client front end 420
where it is stored and can later be presented to the second
client 410.

20

25

30

40

45

50

4

Referring back to FIG. 2, at 220 a reliability score of the
resource is incremented. In some embodiments, a server and/
orresource stored at the server is given a reliability score (e.g.,
0-100) by the cache entity. For purposes of explanation, a
lower reliability score will be considered a more reliable
score. However, the present embodiments may also be imple-
mented using a reliability score where a higher score is con-
sidered more reliable. Each resource, and each of its associ-
ated servers (a resource may be located on multiple parallel
servers such as backup servers), may each have their own
reliability score (e.g., between 0-100).

The caching entity may assign an initial reliability score to
each resource originating from a server. The reliability score
may be based on the server’s credibility (e.g., known uptime
or down times associated with the server) and/or based on the
resource’s content. For example, if the server being cached is
associated with a known banking system, which is very reli-
able, the resource’s reliability score may be 0. In another
example, if a retrieved resource from a particular server is a
low-quality picture it may be given a reliability score of 30
due to a lack of redundancy of information within the file
(e.g., thelow quality picture) for self-correction or self-fixing.
Furthermore, if the low-quality picture came from a suspi-
cious/unstable server which has a ranking of 40, the initial
reliability score of the resource would be 30+40=70. (e.g., the
reliability score of the resource added to the reliability score
of the server)

A cache entity may raise a reliability score of a resource
based on unique actions of a client associated with a caching
entity. The caching entity may initially assign each client a
refresh increment of 1. In other words, when a client performs
a unique action (e.g., an action that indicates a problem with
the resource), such as, but not limited to a refresh request, the
caching entity may raise the resource’s reliability score by the
client’s increment amount (e.g., 1). Thus, if there were 10
refresh actions associated with a given resource (either from
a single client, or a single refresh action from ten different
clients), then the reliability score of the resource would rise
by 10. If we use the previous example where the reliability
score was 70, the 10 refresh actions would raise the reliability
score to 80.

At 230, a determination if the reliability score is greater
than a predetermined limit is made. Each resource, and each
of its associated servers, may have not only their own reli-
ability score (e.g., between 0-100), but also a red line score
(e.g., an upper limit) in the same range (e.g., between 0-100).
If a current reliability score associated with the resource, or
server, goes beyond its red line score, the caching entity may
resample the server that provided this resource. For example,
a caching entity may decide that its red line score for the
low-resolution image mentioned above is 80 (or a user may
determine a preset level for images in general). Thereafter, the
cache entity may save this low-resolution image resource as
valid until the reliability score of the resource rises from 70 to
above 80.

At 240, if the reliability score is greater than the predeter-
mined limit then the particular resource is reloaded. Else, a
currently cashed version of the particular resource is used.

In some embodiments, if the resource’s expiration date/
time arrives before the reliability score goes above the red line
score, the caching entity would resample the resource from
the server upon a next client request for the resource or upon
a decision of the caching entity without client intervention
(e.g., an active pre-fetching mechanism in the caching entity).
In some embodiments, the caching entity may learn from
previous usage of the resource and thus a reliability score and
a statistical popularity of a resource may be used by the

US 9,230,037 B2

5

caching entity to fine tune its pre-fetching mechanism (e.g., if
aresource is very popular and is reaching close to its red line,
the caching entity’s pre-fetching mechanism may want to
resample the server for it, even without a client’s request for
it, assuming this resource would soon be requested again by
clients). The present embodiments may facilitate curing of
cache poisoning by the use of feedback from the user com-
munity before conventional time-out periods occur. In some
embodiments, when requesting a web page, the web page
itself is a resource which may also comprise and/or refer to
several other resources (e.g., pictures, documents, videos,
sounds etc.). The web page may be parsed to store and/or refer
to each of the resources associated with the web page.

Therefore, if a user sends a refresh request for a web page,
a cache entity may analyze the web page to understand which
resources it includes and/or refers to (since the user doesn’t
necessarily ask to refresh a specific component and/or
resource which may be part of the web page and/or is referred
to by the web page). Once the cache entity determines which
resources are associated with the web page, it may increase
each of their Reliability Scores accordingly (and in some
embodiments, with different weights for each one as well).

Accordingly, analysis of a refresh action may rely not only
on the existence of the refresh action itself, but rather also
analyze the refresh action, since the HTTP headers of further
HTTP GET requests which may follow a web page’s refresh
request for example, might not contain the “refresh” field,
even though they are a direct cause of the user’s web browser
trying to reload the whole web page, which may be a resource
as itself that contains and/or refers to other resources as well.

Now referring to FIGS. 5 and 6, a caching entity may
further maintain its information regarding a resource, a server
and client reliability. In other words, a caching entity may
update its initial reliability score that is given to a server
and/or a resource based on a quality of the resource or a
response of the server. For example, if a server returns a lot of
corrupt responses, its initial reliability score would raise. In
response to a rising reliability score, a cache entity may
decide to switch which server it uses to get a particular
resource in order to fulfill a client’s request (assuming there
are backup servers).

Furthermore, a cache entity may also update a resource’s
current reliability score or red line score based on statistics it
gathers, for example, if the resource is requested many times
by clients, and there are no unique actions from the clients’
side indicating any error, the caching entity may assume the
resource is valid, and set its grade to a lower one, or raise its
red line score. As illustrated in FIG. 5, a cache entity may
store a table 500 (which may be a portion of a database) that
stores a resource 1D 502 (e.g., a unique identifier for a
resource), a current reliability score 504 of the resource, a red
line score 506 (e.g. a maximum allowable level) and a default
or starting reliability score 508 for each resource.

The cache entity may also track client increment amounts
as well as a status of each client. In one embodiment, clients
may be grouped into Normal, Good, or Abusive. Each client
may default to be “Normal” and have a client increment
amount of 1.

Abusive clients may be clients that refresh some resource
in an endless loop (or greater than a predetermined number of
refreshes for a predetermined time period), no matter whether
the resource is valid or defective. In order to defend itself from
raising a particular resource’s reliability score for no good
reason due to this abusive client’s refresh actions, a cache
entity may mark this client as abusive and ignore such clients

10

15

20

25

30

35

40

45

50

55

60

65

6

by lowering their client increment amount to below 1 (or even
to 0) so that their unique actions won’t affect the resources’
reliability score.

On the contrary, ifa client performed a contributing refresh
action (e.g., detected a truly defective resource and reported it
to the caching entity), which may have caused the caching
entity to resample this resource from the server due to this
client’s unique action, the client may be marked as “Good”. A
“Good” client may have a client increment amount that is
greater than 1 (e.g., 2 or 3). This indicates that this specific
client is beneficial to the caching entity’s performance. FIG.
6 relates to a relational table 600 that illustrates one embodi-
ment of how a cache entity may track a Client ID 602 and its
associated status 604 and increment 606. By assigning an
increment to each client, each received refresh request may be
weighted based on the increment 606 of the client transmit-
ting the received refresh request, identified by its Client ID
602. The status 604 may function like a red/yellow/green
marker according to the client’s increment 606. The incre-
ment 606 may comprise a weight that the user may have on a
resource’s reliability level. Moreover, the reliability level of a
resource may decrease (e.g., if it’s more reliable) if, for
example, seven “Good” clients did not refresh a resource,
where this decision may also be based on the clients’ incre-
ment, and the amount of reduction of the reliability level itself
may also be based on the clients” weights (e.g., increments or
in this case, decrements).

Now referring to FIG. 7, an embodiment of an apparatus
700 is illustrated. According to some embodiments, the appa-
ratus 700 may relate to a cache entity. The apparatus 700 may
comprise a user interface 701, a medium 702, a processor
703, a main memory 704, and a storage device 705. Accord-
ing to some embodiments, the apparatus 700 may further
comprise a digital display port, such as a port adapted to be
coupled to a digital computer monitor, television, portable
display screen, or the like.

The user interface 701 may allow users to interact with the
apparatus 700 using text commands or with images/graphical
icons. In some embodiments, the user interface may comprise
a keyboard, mouse, or associated port related thereto. Fur-
thermore, the user interface 701 may comprise a display or a
touch screen.

The medium 702 may comprise any computer-readable
medium that may store processor-executable instructions to
be executed by the processor 703. For example, the medium
702 may comprise a non-transitory tangible medium such as,
but is not limited to, a compact disk, a digital video disk, flash
memory, optical storage, random access memory, read only
memory, or magnetic media.

A program may be stored in a compressed, uncompelled
and/or encrypted format. The program may furthermore
include other program elements, such as an operating system,
adatabase management system, and/or device drivers used by
the processor 703 to interface with peripheral devices.

The processor 703 may include or otherwise be associated
with dedicated registers, stacks, queues, etc. that are used to
execute program code and/or one or more of these elements
may be shared there between. In some embodiments, the
processor 703 may comprise an integrated circuit. In some
embodiments, the processor 703 may comprise circuitry to
perform a method such as, but not limited to, the method
described with respect to FIG. 1.

The processor 703 communicates with the storage device
705. The storage device 705 may comprise any appropriate
information storage device, including combinations of mag-
netic storage devices (e.g., a hard disk drive), optical storage
devices, flash drives, and/or semiconductor memory devices.

US 9,230,037 B2

7

The storage device 705 stores a program for controlling the
processor 703. The processor 703 performs instructions of the
program, and thereby operates in accordance with any of the
embodiments described herein. For example, the processor
703 may determine if a red line score has been reached based
on a refresh request from a client.
The main memory 704 may comprise any type of memory
for storing data, such as, but not limited to, a flash driver, a
Secure Digital (SD) card, a micro SD card, a Single Data Rate
Random Access Memory (SDR-RAM), a Double Data Rate
Random Access Memory (DDR-RAM), or a Programmable
Read Only Memory (PROM). The main memory 704 may
comprise a plurality of memory modules.
As used herein, information may be “received” by or
“transmitted” to, for example: (i) the apparatus 700 from
another device; or (ii) a software application or module within
the apparatus 700 from another software application, module,
or any other source.
In some embodiments, the storage device 705 stores a
database (e.g., including information associated with a cache
entity). Note that the database described herein is only an
example, and additional and/or different information may be
stored therein. Moreover, various databases might be split or
combined in accordance with any of the embodiments
described herein.
The following illustrates various additional embodiments
and do not constitute a definition of all possible embodiments,
and those skilled in the art will understand that the present
invention is applicable to many other embodiments. Further,
although the following embodiments are briefly described for
clarity, those skilled in the art will understand how to make
any changes, if necessary, to the above-described apparatus
and methods to accommodate these and other embodiments
and applications.
Moreover, while embodiments have been illustrated using
particular types of tables and databases, embodiments may be
implemented in any other of a number of different ways. For
example, some embodiments might be associated with pub-
lically available information, such as flight or train schedules
available via web sites.
Embodiments have been described herein solely for the
purpose of illustration. Persons skilled in the art will recog-
nize from this description that embodiments are not limited to
those described, but may be practiced with modifications and
alterations limited only by the spirit and scope of the
appended claims.
What is claimed is:
1. A method comprising:
receiving, at a cache entity, a first refresh request associated
with a particular resource from a first unique client;

determining, via a processor, that the first refresh request
associated with the particular resource from the first
unique client does not indicate a defective copy of the
particular resource at the cache entity based on deter-
mining that the first refresh request does not meet a
predetermined number of refreshes coming from a pre-
determined number of unique clients;

receiving, at a cache entity, a second refresh request asso-

ciated with the particular resource from a second unique
client;

determining, via the processor, that the first refresh request

associated with the particular resource from the first
unique client and the second refresh request associated
with the particular resource from the second unique
client indicates a defective copy of the particular
resource at the cache entity based on determining that
the first refresh request and the second refresh request

5

10

15

20

25

30

35

40

45

50

55

60

8

meet the predetermined number of refreshes coming
from the predetermined number of unique clients;

in response to the predetermined number of refreshes com-

ing from the predetermined number of unique clients
being met, reloading the particular resource from a
server; and
storing the reloaded resource at the cache entity.
2. The method of claim 1, wherein the determining that the
first refresh request associated with the particular resource
from the first unique client and the second refresh request
associated with the particular resource from the second
unique client meets the predetermined number of refreshes is
further based on exceeding a reliability score associated with
the particular resource.
3. The method of claim 2, wherein the reliability score is
incremented based on a number of received refresh requests.
4. The method of claim 3, wherein the first refresh request
is weighted based on the first unique client transmitting the
first refresh request and the second refresh request is
weighted based on the second unique client transmitting the
second refresh request.
5. The method of claim 2, wherein the reliability score
associated with the particular resource is based on an up-time
of the server.
6. The method of claim 1, wherein the first refresh request
comprises an HTTP GET request, and wherein the HTTP
GET request comprises a field indicating that the first request
is a refresh.
7. The method of claim 1, wherein the reloaded resource is
replaced at the cache entity prior to an end of a cache entity
time-out period.
8. The method of claim 1, wherein the defective copy
comprises an incomplete copy of the particular resource.
9. The method of claim 1, wherein the defective copy
comprises an incorrect copy of the particular resource.
10. A non-transitory computer-readable medium compris-
ing instructions that when executed by a processor perform a
method, the method comprising:
receiving, at a cache entity, a first refresh request associated
with a particular resource from a first unique client;

determining, via a processor, that the first refresh request
associated with the particular resource from the first
unique client does not indicate a defective copy of the
particular resource at the cache entity based on deter-
mining that the first refresh request does not meet a
predetermined number of refreshes coming from a pre-
determined number of unique clients;

receiving, at a cache entity, a second refresh request asso-

ciated with the particular resource from a second unique
client;

determining, via the processor, that the first refresh request

associated with the particular resource from the first
unique client and the second refresh request associated
with the particular resource from the second unique
client indicates a defective copy of the particular
resource at the cache entity based on determining that
the first refresh request and the second refresh request
meet the predetermined number of refreshes coming
from the predetermined number of unique clients;

in response to the predetermined number of refreshes com-

ing from the predetermined number of unique clients
being met, reloading the particular resource from a
server; and

storing the reloaded resource at the cache entity.

11. The medium of claim 10, wherein the determining that
the first refresh request associated with the particular resource
from the first unique client and the second refresh request

US 9,230,037 B2

9

associated with the particular resource from the second
unique client meets the predetermined number of refreshes is
further based on exceeding a reliability score associated with
the particular resource.

12. The medium of claim 11, wherein the reliability score
is incremented based on a number of received refresh
requests.

13. The medium of claim 12, wherein the first refresh
request is weighted based on the first unique client transmit-
ting the first refresh request and the second refresh request is
weighted based on the second unique client transmitting the
second refresh request.

14. The medium of claim 11, wherein the reliability score
associated with the particular resource is based on an up-time
of the server.

15. The medium of claim 10, wherein the first refresh
request comprises an HTTP GET request, and wherein the
HTTP GET request comprises a field indicating that the first
request is a refresh.

16. An apparatus comprising:

a processor;

a non-transitory computer-readable medium comprising
instructions that when executed by the processor per-
form a method, the method comprising:

receiving, at a cache entity, a first refresh request associated
with a particular resource from a first unique client;

determining, via the processor, that the first refresh request
associated with the particular resource from the first
unique client does not indicate a defective copy of the
particular resource at the cache entity based on deter-
mining that the first refresh request does not meet a
predetermined number of refreshes coming from a pre-
determined number of unique clients;

receiving, at a cache entity, a second refresh request asso-
ciated with the particular resource from a second unique
client;

10

20

25

30

10

determining, via the processor, that the first refresh request
associated with the particular resource from the first
unique client and the second refresh request associated
with the particular resource from the second unique
client indicates a defective copy of the particular
resource at the cache entity based on determining that
the first refresh request and the second refresh request
meet the predetermined number of refreshes coming
from the predetermined number of unique clients;

in response to the predetermined number of refreshes com-

ing from the predetermined number of unique clients
being met, reloading the particular resource from a
server; and

storing the reloaded resource at the cache entity.

17. The apparatus of claim 16, wherein the determining
that the first refresh request associated with the particular
resource from the first unique client and the second refresh
request associated with the particular resource from the sec-
ond unique client meets the predetermined number of
refreshes is further based on exceeding a reliability score
associated with the particular resource.

18. The apparatus of claim 17, wherein the reliability score
is incremented based on a number of received refresh
requests.

19. The apparatus of claim 18, wherein the first refresh
request is weighted based on the first unique client transmit-
ting the first refresh request and the second refresh request is
weighted based on the second unique client transmitting the
second refresh request.

20. The apparatus of claim 17, wherein the reliability score
associated with the particular resource is based on an up-time
of the server.

